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Characteristics of Waveguides with a

Semiconductor Side Wall

R. D. LARRABEE, MEMBER, IEEE

Absfract-The attenuation, guide wavelength, and characteristic

impedance of rectangular waveguides with one high conductivity

semiconductor side wall have been derived for the case of propagating

TENO modes. These properties can be interpreted in terms of the

penetration of the microwave electric field into the semiconductor

material by an amount of the same order as, but generally unequal

to, the classical skin depth. These theoretical results are evaluated

for the special case of an indinm antimonide side wall in RG 138/U

waveguide operating at 110 Gc/s. The calculated attenuation lengths

and guide wavelengths for this case are of such magnitude that they

can be measured with reasonable accuracy, thus illustrating the

value of this technique for the measurement of the electrical prop-

erties of semiconductor materials at the higher microwave fre-

quencies.

INTRODUCTION

T

HERE HAS BEEN an increasing interest in the

microwave properties of semiconductor and semi-

metal materials. This interest has been expressed

in theoretical studies [1 ]– [6 ] as well as in experimental

investigations [7 ]– [13]. Many experiments have in-

volved the measurement of just one microwave parame-

ter (e. g., a resonance frequency, the magnitude of a re-

flected or transmitted wave, etc.) from which can be

inferred one piece of information about the sample.

Other experiments have measured both the amplitude

and phase of a reflected or transmitted wave and, con-

sequently, have the potential of measuring two pieces

of information about the sample [14]– [16]. However,

this latter case usually requires calculating the im-

pedance (reflection coefficient) or transmittance of an

obstacle of specified geometry and arbitrary electrical

properties. The configuration of an inductive post in

dominant mode rectangular waveguide has been solved

theoretically [17 ], [6] and has been used in recent ex-

periments [8], [9], [12 ]. However, in order for the in-

ductive post configuration to yield accurate results, its

impedance must not be too near the center, or the

periphery, of the Smith Chart (i.e., the reflection co-

efficient should not have a magnitude close to zero or

unity). For the case of semiconductor and semimetal

materials in which the conduction current is greater

than the lattice displacement current, it can be shown

[6] that the inductive post should have a radius ap-

proximately equal to the classical skin depth. This re-

quirement leads to very small post radii in experiments

involving high conductivity materials at the higher

microwave frequencies.
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This report discusses an alternative approach to the

basic problem involving microwave measurements of

high conductivity materials, It will be shown that if

such a high conductivity material is used to replace one

side wall of a rectangular waveguide, the electrical

properties of the material can be computed from the

measured propagation characteristics (i. e., the attenua-

tion length and guide wavelength) of this composite

waveguide structure. The advantages of this ‘(side wall

method” arise not only from the large samples that can

be used, but also from the ease of fabricating a planar

sample compared to a cylindrical inductive post of small

radius and the applicability of this method to the grow-

ing technology of thin films. The side wall can easily be

capacitively coupled to the metallic waveguide [12],

thus avoiding the necessity of making contacts and/or

interrupting the microwave current flow [8].

A theoretical study of the characteristics of a per-

fectly conducting waveguide with a semiconductor side

wall is discussed in this paper. It will be shown that in

the limit of high conductivity materials, this analysis

leads to relatively simple equations that can be inter-

preted physically. The analytical results are illustrated

by an evaluation of the attenuation length and guide

wavelength of an RG 138/U waveguide (90 to 140 Gc/s)

operating at a frequency of 110 Gc/s with one side wall

replaced with iridium antimonide with arbitrary elec-

trical properties.

FORMULATION OF THE PROBLEM

The basic problem to be discussed involves the

characteristics of an electromagnetic wave confined to

the interior of a rectangular waveguide bounded on

three sides by perfectly conducting walls and on the

fourth side by a wall of semiconductor (or semimetal)

material of finite conductivity. It will be assumed that

the semiconductor wall is sufficiently thick so that there

will be a negligible microwave electric field at its ex-

terior surface (i.e., it will be assumed to be many classi-

cal skin depths thick). Consequently, the problem in-

volves the determination of the microwave electric field

in two regions (the semiconductor and the dielectric

filling the interior of the waveguide) with an abrupt

planar discontinuity between them.

The semiconductor material comprising the non -

metallic wall will be assumed to be extrinsic or, in the

case where both signs of mobile charge carriers are

present, that one carrier can be considered relatively im-

mobile by virtue of its low mobility. It w-ill be assumed
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that the electrical properties of the semiconductor are

not functions of position (i. e., that the material is homo-

geneous and that negligible space charge is present), or

functions of the magnitude of the microwave electric

and J’or magnetic fields [11 ]. The microwave magnetic

field BI will be assumed to be small (i.e., pBl<<l, where

w is the mobility of the dominant charge in the semi-

conductor in M KS units).

A differential equation for the microwave electric

field within the semiconductor can be clerived following

the procedure outlined in Larrabee [6]. In this way it is

found that if the above assumptions are valid, the

microwave electric field in the semiconductor satisfies

the following vector relationship (in M KS units)

VZE1 + K2E1 = O (1)

\vhere

–jcq4JuAc!
K2 = CFCWO+ ———

1 + j-w
(2)

and

EI = the microwave electric field at any point in the

semiconductor,

u = the radian frequency of the assumed sinusoidal

microwave oscillations of the form eJWf,

t = the dielectric constant of the semiconductor

lattice,

MO= the permeability of free space (the semiconduc-

tor is assumed to be nonmagnetic),
j=(–l)m

(.TAC= the conductivity of the charge carriers in the

semiconductor at the radian frequency a and is

assumed to be real (i.e., not complex),

T = a parameter with the dimensions of time that is

equal to u~c m/Ne2 where m and n are the

effective mass and density of the charge carriers,

respectively, and e is the electronic charge.

In some cases, T will be equal to the carrier scattering

time. Notice that the semiconductor has been character-

ized by three electrical properties (e, o’~c, and ~). The

purpose of the present analysis is to compute the proper-

ties of a waveguide with one semiconductor wall in

terms of these three material properties.

The microwave electric field in the dielectric material

filling the waveguide will also obey (1) and (2). How-

ever, it will be assumed that this material is a lossless

dielectric with zero conductivity and a real dielectric

constant equal to Ed.

SOLUTION FOR TRANSVERSE ELECTRIC MODES

It is now necessary to solve (1) in the two regions of

the problem and to apply the appropriate boundary

conditions and thus obtain the desired solution. The

following discussion will be concerned with only TENO

modes since these modes yield particularly simple equa-

tions and include the dominant TEIo mode most often

used in rectangular waveguide.’ The Y direction of a

rectangular coordinate system will be taken parallel to

the electric field of the assumed TE~o mode, and the

Z direction will be taken as that normal to the senni-

conductor-dielectric interface. The microwave electric

fields in the semiconductor and dielectric are assumed

to have the form

Eu’ = A ej”tey%’xe~z’z (3)

where the superscript s refers to the semiconductor and

the superscript d to the dielectric. The subscripts ~, y,

and z refer to the coordinate axes. Thus EU8 and Egd are

the microwave electric fields in the y direction in the

semiconductor and dielectric, respectively. A and B are

complex constants and the gammas are propagation

constants as defined by their subscripts and superscript ts.

By substituting (3) and (4) into the original differ-

ential equations [(1) and (2), which are used as writt;en

above for the semiconductor region, and with uA z:=O

and c replaced by Cd fir the dielectric region] and apply-

ing the appropriate boundary conditions, one obtain @

where

a = the waveguide width (i. e., the distance between

the semiconductor-dielectric interface and the

opposite conducting wall),

K’= the value of K as defined by (2) for the semic-

onductor.

Since the boundary conditions demand that ~ZS=y,,d,

these superscripts have been dropped and both of these

quantities are designated as y..

Consequently, this equation can be solved for YZ and,

in this way, determine the propagation characteristics

of a waveguide with a semiconductor side wall. How-

ever, (5) is a complicated transcendental equa tion that

is not easily handled. Therefore, it is convenient to

make an additional assumption which will eliminate the

exponential dependence in this equation and facilitate

further study of this solution.

LARGE Corwucrrwrry APPROXIMATION

If a~c is large, then the right-hand side of (5) a p-

proaches unity, and the exponent of the term on the

left-hand side of (5) approaches 2N7r, where N is an

integer (mode index). If, in fact, the conductivity of

the semiconductor were taken as infinite, this exponent

1 The method of transverse resonance outlined on p. 389 of
Marcuvitz [17] can also be used to solve this problem.
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would exactly equal 2N7r, and (5) would reduce to

NT 2

()
7.2 = — — U%dpo (6)

a

which is exactly the dispersion relation of a TENO mode

in lossless rectangular waveguide.

If the conductivity of the semiconductor is large

but finite, one can simplify (5) by expanding both sides

in a power series and retaining only terms to first order

in (Ks)2— Q2~apJ-1. In this way, one obtains

N2T2 2
Y%z = — [11+jz —C#edpo

a’

(7)

where for simplicity of notation the quantity

(KS)2 – CJ’edWohas been called k. A critical review of the

several assumptions made in the derivation of (7) re-

veals that this equation is valid if

I ak j > 2N~. (8)

For convenience of notation, the real and imaginary

parts of k will be called k’ and k“, respectively, (i.e.,

k’=(m) ’-co’e’po=k’+jk”, where k’ and k“ are real

quantities). The propagation constant ~. can be divided

into real and imaginary parts as follows:

~.=a+i~~
A,

where a is the attenuation constant and AQ is the

guide wavelength. By using these relationships, (7), and

the approximation of (8), one finds that for materials

with a positive conductivity (i.e., no microwave gener-

ating mechanisms), the complex quantity ,4 must lie in

the fourth quadrant (i.e., k’ is positive and k“ is nega-

tive) and that a and Aa can be expressed as follows:

12 a3 (k’)’ + (k”)’
— . (9)
C2 N2T ~ k’

[

N’ (Ago)’
Xo=xgo l+——————

#J

4 a’ (k’)z + (k”)’ 1 (lo)

where Ago is the guide wavelength corresponding to the

infinite conductivity case given by (6).

One can compute Poynting’s vector for the portion

of the solution within the dielectric and thus the power

flow in the X direction. For the present case of high-

conductivity semiconductors, one can usually neglect

the small amount of power that is propagated in the

X direction within the semiconductor side wall. In this

way, one can compute the voltage-power characteristic

impedance ZO of the composite structure which, by using

the approximation of (8) can be written in the form

2b Ago ;0

d[

k,!

Zo=:c > 1+
(k’)z + (k”)’

“(+)(1+%32)1‘1’)

where b is the height of the waveguide (i.e., the dimen-

sion of the waveguide in the Y direction), and A. is the

free space wavelength.

The guide wavelength (1 O) and the characteristic

impedance (11 ) can be interpreted in comparatively

simple terms. The penetration of the microwave electric

field into the semiconductor side wall makes the wave-

guide have an effective width slightly larger than the

dimension a. One can consider, therefore, replacing the

semiconductor side wall ~vith a perfectly conducting

side wall that is located a small distance A behind the

actual position of the semiconductor-dielectric interface

so as to make the width of the dielectric in this new

waveguide equal to (a +A). The distance A can be

chosen so as to make the guide wavelength of this per-

fectly conducting m-aveguide equal to that of the wave-

guide ~ith the semiconductor side wall. In this way,

one finds that

~ff
A=–

(k’)’ + (k”)’ “
(12)

It is also significant that the characteristic impedance

of the perfectly conducting waveguide of width (a +A)

is identical with (11). Therefore, one can consider that

the change in guide \ravelength and characteristic im-

pedance, due to the replacement of the usual perfectly

conducting wall by a semiconducting wall, results from

an increase in the effective widths of the waveguide by

an amount given by (12).

APPLICATION OF RESULTS TO INDIUM ANTIMONIDE

The above equations are best illustrated by a numeri-

cal evaluation of (9) and (10) for a specific case. Consider

an RG 138/U coin silver (“perfect conductor”) wave-

guide with inside dimensions of 40 by 80 roils operating

at a frequency of 110 Gc/s, with N= 1 (dominant mode).

Suppose that one side wall of this waveguide was re-

moved and replaced with a slab of iridium antimonide

(e= 18.7 ~. in MKS units [18]) and that the interior of

the resulting structure is filled with air (Ed= CO). Figure 1

illustrates the results of an evaluation of (9) and (1 O)

for this particular case. The reciprocal attenuation

constant l/cY and the change in guide wavelength

[i.e., (~,0-h,)/A,o] are plotted in this figure for various

values of the conductivity of the iridium antimonide and

for vari :US values of the parameter 7 (expressed as w-).

Notice that at low values of ox- and high values of con-

ductivity, the curves of Fig. 1 are nearly orthogonal and

inclined at an angle of approximately 45° to the axes of

the graph. In this region, one can use these curves

[or (9) and (10) ] to convert from the semiconductor

properties ~A c and T to the waveguide properties cx and

A,, or vice versa, with a high degree of accuracy. Notice,

however, that at low conductivities and/or high wr

values, the curves of Fig. 1 lose their near orthogonal

characteristics, and their value in converting from the

semiconductor to the waveguide properties diminishes.
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Fig. 1. The theoretical attenuation and guide wavelength of an RG
138/U waveguide (inside dimensions 40 by 80 roils) operating in
the TEIO mode at 110 Gc/s. One side wall of this waveguide has
been replaced with iridium antimonide with the electrical prop-
erties shown in the figure. The relative die Iectric constant of the
iridium antimonide was assumed to equal 18.7, and that of the air
filling the interior of the guide equal to unity. The distance along
the waveguide required to decrease the volt~ge of the propagating
wave by a factor of e is plotted horizontally (multiply this scale
by 0.346 to convert to the distance requiredl to halve the power in
the wave). The guide wavelength is expressed along the vertical
scale of this figure as the relative decrease in guide wavelength
caused by replacing a perfectly conducting side wall by the semi-
conductor side wall. This figure was obtained by plotting the re-
sults of a numerical evaluation of (9) and (10).

The curves of Fig. 1 were computed on the assumption

that the absolute value of ka was greater than 2Tr

[see (8) ]. Figure 2 represents a graph of the contours of

equal value of I ka ] as computed frc}m the above ap-

proximate equations as a function of the semiconductor

parameters. The region near the contour, with a value

of ten represents a region in which there is a partial

cancellation of the inductive component of the motion

of the semiconductor charge carriers by the capacitive

displacement current of the semiconductor lattice.

Therefore, since one is generally interested in measuring

effects due to the motion of the charge carriers (i.e.,

a~c and ~), one might expect to find the largest de-

pendence upon these parameters in the regions of Fig. 2

corresponding to a larger value of I ka ] than this mini-

mum. Figure 3 shows that this is indeed the case, for it

shows that the portions of the curves of Fig. 1 that are

the most useful correspond to the high I ka ] values in

the lower right-hand side of Fig. 2. Ii: k apparent that

the present high-conductivity assumption [i.e., (8) ] is

a self-consistent assumption in those regions of the

curves of Fig. 1 [or (9) and (10) ] that are most useful

for computational purposes.

CONCLUSIONS

The attenuation, guide wavelength, and character-

istic impedance of waveguides propagating TENO modes

with one side wall replaced by a high-conductivity semi-

16’[ 1 I {1)1)!1 1 I 1 I I d J !I!llll I JLL!Lld
Id I00 10’ 102 103

CONDUCTIVITY IN mho /cm

Fig. 2. A graphical illustration of the contours of equal value of the
parameter I ka I as a function of the electrical properties c~f the
iridium antimonide with the conditions of Fig. 1. At large con-
ductivities and small values of w, this parameter is indeed larger
than 27i-, as was assumed in the derivation of (9) and (10).

EXTINCTION LENGTH IN CENTIMETERS

Fig. 3. A graphical illustration of the contours of equa 1value c,f the
parameter I ka ] of Fig. 2 superimposed on the curves of Fig. 1.
Notice that in the region where the curves of Fig. 1 show a large
dependence on the electrical properties of the iridium antimcmide,
the parameter I ka I is much larger than 27, thus illustrating the
self-consistency of this assumption in this region of the curves of
Fig. 1.

conductor have been derived. It has been shown that

the penetration of the microwave electric field into the

semiconductor material effectively increases the width

of the waveguide by an amount of the same order a~ the

classical skin depth. The analytical results have been

evaluated for the case of an iridium antim~onide side

wall in RG 138/U waveguide operating at 110 Gc/s.

The calculated attenuation lengths and guide WilVe-

Iengths for this case are of such magnitude that they can

be measured with reasonable accuracy, thus illustrating

the value of this technique for the measurement of the

high-frequency properties of iridium antirnonide.
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A Technique for Measuring Individual Modes

Propagating in Overmoded Waveguide

D. S. LEVINSON, MEMBER, IEEE, AND 1. RUBINSTEIN, MEMBER, IEEE

Abstracf—A practical measurement technique for determining

the relative amplitude and phase of the individual modes propagating

in overmoded waveguide is described. A phase-sensitive detector is

used to measure the output of fixed probes placed around a single

transverse plane in a section of enlarged waveguide. The detected

output is directly proportional to the modal components, and data

reduction is performed manually. The use of oversize waveguide

provides increased accuracy and permits total multimode power

measurements in conjunction with mode analysis. The technique

can be used for mode measurements up to the fourth harmonic in

standard rectangular waveguide. Experiments described in the paper

use a single frequency source. However, signal sources with spurious

content can be evaluated using appropriate tunable RF band-pass

filters.

lNTRODUC’rION

M

EASUREMENTS in waveguide containing two

or more propagating modes has received con-

siderable attention from microwave engineers

in recent years. This paper describes a practical tech-

nique for mode measurement that can provide rapid
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performance data on waveguide components subjected

to overmoded propagation of power.

An effective device or technique for measuring multi-

mode power must be able to determine the power in

each mode or measure the total power regardless of the

number of modes present. Both approaches have been

used by various independent investigators to measure

multimode power, and a number of techniques have been

developed for use with rectangular waveguide [1]- [6].

Of particular interest here is the technique reported by

Taub, based on the use of an enlarged section of wave-

guide [1]. This technique measures the total multimode

power in the waveguide without identification of, or

regard for, the individual propagating modes.

This paper describes a simple and practical measure-

ment technique for identifying the individual modes and

determining their relative amplitude and phase using

the same oversize waveguide as Taub. Whereas Taub’s

method requires enlarged waveguide as a basic com-

ponent, its use for mode measurements proves to be

advantageous from practical considerations rather than

being required by theoretical considerations.


