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Characteristics of Waveguides with a
Semiconductor Side Wall

R. D. LARRABEE, MEMBER, IEEE

Abstract—The attenuation, guide wavelength, and characteristic
impedance of rectangular waveguides with one high conductivity
semiconductor side wall have been derived for the case of propagating
TExo modes. These properties can be interpreted in terms of the
penetration of the microwave electric field into the semiconductor
material by an amount of the same order as, but generally unequal
to, the classical skin depth. These theoretical results are evaluated
for the special case of an indium antimonide side wall in RG 138/U
waveguide operating at 110 Gc/s. The calculated attenuation lengths
and guide wavelengths for this case are of such magnitude that they
can be measured with reasonable accuracy, thus illustrating the
value of this technique for the measurement of the electrical prop-
erties of semiconductor materials at the higher microwave fre-
quencies.

INTRODUCTION

HERE HAS BEEN an increasing interest in the
T microwave properties of semiconductor and semi-

metal materials. This interest has been expressed
in theoretical studies [1]-[6] as well as in experimental
investigations [7]-[13]. Many experiments have in-
volved the measurement of just one microwave parame-
ter (e.g., a resonance frequency, the magnitude of a re-
flected or transmitted wave, etc.) from which can be
inferred one piece of information about the sample.
Other experiments have measured both the amplitude
and phase of a reflected or transmitted wave and, con-
sequently, have the potential of measuring two pieces
of information about the sample [14]-[16]. However,
this latter case usually requires calculating the im-
pedance (reflection coefficient) or transmittance of an
obstacle of specified geometry and arbitrary electrical
properties. The configuration of an inductive post in
dominant mode rectangular waveguide has been solved
theoretically [17], [6] and has been used in recent ex-
periments [8], [9], [12]. However, in order for the in-
ductive post configuration to yield accurate results, its
impedance must not be too near the center, or the
periphery, of the Smith Chart (i.e., the reflection co-
efficient should not have a magnitude close to zero or
unity). For the case of semiconductor and semimetal
materials in which the conduction current is greater
than the lattice displacement current, it can be shown
[6] that the inductive post should have a radius ap-
proximately equal to the classical skin depth. This re-
quirement leads to very small post radii in experiments
involving high conductivity materials at the higher
microwave frequencies.
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This report discusses an alternative approach to the
basic problem involving microwave measurements of
high conductivity materials. It will be shown that if
such a high conductivity material is used to replace one
side wall of a rectangular waveguide, the electrical
properties of the material can be computed from the
measured propagation characteristics (i.e., the attenua-
tion length and guide wavelength) of this composite
waveguide structure. The advantages of this “side wall
method” arise not only from the large samples that can
be used, but also from the ease of fabricating a planar
sample compared to a cylindrical inductive post of small
radius and the applicability of this method to the grow-
ing technology of thin films. The side wall can easily be
capacitively coupled to the metallic waveguide [12],
thus avoiding the necessity of making contacts and/or
interrupting the microwave current flow [8].

A theoretical study of the characteristics of a per-
fectly conducting waveguide with a semiconductor side
wall is discussed in this paper. It will be shown that in
the limit of high conductivity materials, this analysis
leads to relatively simple equations that can be inter-
preted physically. The analytical results are illustrated
by an evaluation of the attenuation length and guide
wavelength of an RG 138/U waveguide (90 to 140 Gc/s)
operating at a frequency of 110 Gc/s with one side wall
replaced with indium antimonide with arbitrary elec-
trical properties.

FORMULATION OF THE PROBLEM

The basic problem to be discussed involves the
characteristics of an electromagnetic wave confined to
the interior of a rectangular waveguide bounded on
three sides by perfectly conducting walls and on the
fourth side by a wall of semiconductor {or semimetal)
material of finite conductivity. It will be assumed that
the semiconductor wall is sufficiently thick so that there
will be a negligible microwave electric field at its ex-
terior surface (i.e., it will be assumed to be many classi-
cal skin depths thick). Consequently, the problem in-
volves the determination of the microwave electric field
in two regions (the semiconductor and the dielectric
filling the interior of the waveguide) with an abrupt
planar discontinuity between them.

The semiconductor material comprising the non-
metallic wall will be assumed to be extrinsic or, in the
case where both signs of mobile charge carriers are
present, that one carrier can be considered relatively im-
mobile by virtue of its low mobility. It will be assumed
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that the electrical properties of the semiconductor are
not functions of position (i.e., that the material is homo-
geneous and that negligible space charge is present), or
functions of the magnitude of the microwave electric
and/or magnetic fields [11]. The microwave magnetic
field B, will be assumed to be small (i.e., uB;<1, where
@ is the mobility of the dominant charge in the semi-
conductor in MKS units).

A differential equation for the microwave electric
field within the semiconductor can be derived following
the procedure outlined in Larrabee [6]. In this way it is
found that if the above assumptions are wvalid, the
microwave electric field in the semiconductor satisfies
the following vector relationship (in MKS units)

V2E,+ K*E, =0 (1)
where
—jw#oﬂac
K? = weup + — 2
Ho 1+ jor @
and

E;=the microwave electric field at any point in the
semiconductor,
w=the radian frequency of the assumed sinusoidal
microwave oscillations of the form e¢,
e=the dielectric constant of the semiconductor
lattice,
wo=the permeability of free space (the semiconduc-
tor is assumed to be nonmagnetic),
j=(=1",
gac=the conductivity of the charge carriers in the
semiconductor at the radian frequency w and is
assumed to be real (i.e., not complex),
7=a parameter with the dimensions of time that is
equal to g4¢ m/Ne? where m and n are the
effective mass and density of the charge carriers,
respectively, and e is the electronic charge.

In some cases, T will be equal to the carrier scattering
time. Notice that the semiconductor has been character-
ized by three electrical properties (¢, oac, and 7). The
purpose of the present analysis is to compute the proper-
ties of a waveguide with one semiconductor wall in
terms of these three material properties.

The microwave electric field in the dielectric material
filling the waveguide will also obey (1) and (2). How-
ever, it will be assumed that this material is a lossless
dielectric with zero conductivity and a real dielectric
constant equal to €%

SOLUTION FOR TrRANSVERSE ELECTRIC MODES

It is now necessary to solve (1) in the two regions of
the problem and to apply the appropriate boundary
conditions and thus obtain the desired solution. The
following discussion will be concerned with only TExo
modes since these modes yield particularly simple equa-
tions and include the dominant TE;, mode most often
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used in rectangular waveguide.” The V direction of a
rectangular coordinate system will be taken parallel to
the electric field of the assumed TExo mode, and the
Z direction will be taken as that normal to the semi-
conductor-dielectric interface. The microwave electric
fields in the semiconductor and dielectric are assumed
to have the form

. s s .

Eyg = Adeloteve Xpgve Z (3)
. d d

L@ = Beloters Xevz Z (4)

where the superscript s refers to the semiconductor and
the superscript 4 to the dielectric. The subscripts x, v,
and z refer to the coordinate axes. Thus E,f and E,? are
the microwave electric fields in the y direction in the
semiconductor and dielectric, respectively. 4 and B are
complex constants and the gammas are propagation
constants as defined by their subscripts and superscripts.
By substituting (3) and (4) into the original differ-
ential equations [(1) and (2), which are used as written
above for the semiconductor region, and with o4 =0
and e replaced by € fir the dielectric region| and apply-
ing the appropriate boundary conditions, one obtains

(K*)? — w2 0)
—{1+ ¥a' +weM:J}
}

(K*)? — weuo
22+ we #0
a=the waveguide width (i.e., the distance between
the semiconductor-dielectric interface and the
opposite conducting wall),
K¢ =the value of K as defined by (2) for the semi-
conductor.

1/2

L2 924d
g2ialys +w € po) =

(5)

1/2

e

where

Since the boundary conditions demand that v,*=+.9,
these superscripts have been dropped and both of these
quantities are designated as ..

Consequently, this equation can be solved for v, and,
in this way, determine the propagation characteristics
of a waveguide with a semiconductor side wall. How-
ever, (5) is a complicated transcendental equation that
1s not easily handled. Therefore, it is convenient to
make an additional assumption which will eliminate the
exponential dependence in this equation and facilitate
further study of this solution.

LarceE CONDUCTIVITY APPROXIMATION

If gac is large, then the right-hand side of (5) ap-
proaches unity, and the exponent of the term on the
left-hand side of (5) approaches 2Nw, where N is an
integer (mode index). If, in fact, the conductivity of
the semiconductor were taken as infinite, this exponent

* The method ot transverse resonance outlined on p. 389 of
Marcuvitz [17] can also be used to solve this problem.
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would exactly equal 2N, and (5) would reduce to

Nm\2?
B

a

which is exactly the dispersion relation of a TEyo mode
in lossless rectangular waveguide,

If the conductivity of the semiconductor is large
but finite, one can simplify (5) by expanding both sides
in a power series and retaining only terms to first order
in (K9)?—w%up)~'. In this way, one obtains

Ng? 2
vt = 1| = e ™
a? ak

where for simplicity of notation the quantity
(K*)*—w?%u, has been called k. A critical review of the
several assumptions made in the derivation of (7) re-
veals that this equation is valid if

| ak| > 2N, (8)

For convenience of notation, the real and imaginary
parts of k will be called %' and k", respectively, (i.e.,
k=(K*)?*—w’iuo=~k +jk'’, where &’ and k'’ are real
quantities). The propagation constant v, can be divided
into real and imaginary parts as follows:

27
Y= a + 4 —

g

where « is the attenuation constant and N\, is the
guide wavelength. By using these relationships, (7), and
the approximation of (8), one finds that for materials
with a positive conductivity (i.e., ne microwave gener-
ating mechanisms), the complex quantity % must lie in
the fourth quadrant (i.e., #’ is positive and £’/ is nega-
tive) and that « and A\, can be expressed as follows:
1 2 @ (F) 4 (B o)
« N p 4
N (A2 I
xa=xgo[1+_—“) ]
4 & (B) 4 (&)

where N\, is the guide wavelength corresponding to the
infinite conductivity case given by (6).

One can compute Poynting’s vector for the portion
of the solution within the dielectric and thus the power
flow in the X direction. For the present case of high-
conductivity semiconductors, one can usually neglect
the small amount of power that is propagated in the
X direction within the semiconductor side wall. In this
way, one can compute the voltage-power characteristic
impedance Z, of the composite structure which, by using
the approximation of (8) can be written in the form

(10)

26 A0 o k¥’
Jo = — 2. ﬂ[l +——
)+

@ Ao ¢
G5 G))] o
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where 6 is the height of the waveguide (i.e., the dimen-
sion of the waveguide in the ¥ direction), and A, is the
free space wavelength.

The guide wavelength (10) and the characteristic
impedance (11) can be interpreted in comparatively
simple terms. The penetration of the microwave electric
field into the semiconductor side wall makes the wave-
guide have an effective width slightly larger than the
dimension a. One can consider, therefore, replacing the
semiconductor side wall with a perfectly conducting
side wall that is located a small distance A behind the
actual position of the semiconductor-dielectric interface
so as to make the width of the dielectric in this new
waveguide equal to (¢+A). The distance A can be
chosen so as to make the guide wavelength of this per-
fectly conducting waveguide equal to that of the wave-
guide with the semiconductor side wall. In this way,
one finds that

k//

A= — . 12
#)r + (k2 -

It 1s also significant that the characteristic impedance
of the perfectly conducting waveguide of width (a--A)
is identical with (11). Therefore, one can consider that
the change in guide wavelength and characteristic im-
pedance, due to the replacement of the usual perfectly
conducting wall by a semiconducting wall, results from
an increase in the effective widths of the waveguide by
an amount given by (12).

APPLICATION OF RESULTS TO INDIUM ANTIMONIDE

The above equations are best illustrated by a numeri-
cal evaluation of (9) and (10} for a specific case. Consider
an RG 138/U coin silver (“perfect conductor”) wave-
guide with inside dimensions of 40 by 80 mils operating
at a frequency of 110 Ge/s, with N =1 (dominant mode).
Suppose that one side wall of this waveguide was re-
moved and replaced with a slab of indium antimonide
(e=18.7 ¢, in MKS units [18]) and that the interior of
the resulting structure is filled with air (e?=¢,). Figure 1
illustrates the results of an evaluation of (9) and (10)
for this particular case. The reciprocal attenuation
constant 1/a and the change in guide wavelength
[i.e., A2 —N\,)/A] are plotted in this figure for various
values of the conductivity of the indium antimonide and
for various values of the parameter 7 (expressed as wr).
Notice that at low values of wr and high values of con-
ductivity, the curves of Fig. 1 are nearly orthogonal and
inclined at an angle of approximately 45° to the axes of
the graph. In this region, one can use these curves
[or (9) and (10)] to convert from the semiconductor
properties g4 ¢ and 7 to the waveguide properties « and
Ay, Or vice versa, with a high degree of accuracy. Notice,
however, that at low conductivities and/or high wr
values, the curves of Fig. 1 lose their near orthogonal
characteristics, and their value in converting from the
semiconductor to the waveguide properties diminishes.
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Fig. 1. The theoretical attenuation and guide wavelength of an RG
138/U waveguide (inside dimensions 40 by 80 mils) operating in
the TE, mode at 110 Gc¢/s. One side wall of this waveguide has
been replaced with indium antimonide with the electrical prop-
erties shown in the figure. The relative dielectric constant of the
indium antimonide was assumed to equal 18.7, and that of the air
filling the interior of the guide equal to unity. The distance along
the waveguide required to decrease the voltage of the propagating
wave by a factor of e is plotted horizontally (multiply this scale
by 0.346 to convert to the distance required to halve the power in
the wave). The guide wavelength is expressed along the vertical
scale of this figure as the relative decrease in guide wavelength
caused by replacing a perfectly conducting side wall by the semi-
conductor side wall. This figure was obtained by plotting the re-
sults of a numerical evaluation of (9) and (10).

The curves of Fig. 1 were computed on the assumption
that the absolute value of ke was greater than 2«
[see (8)]. Figure 2 represents a graph of the contours of
equal value of fkal as computed from the above ap-
proximate equations as a function of the semiconductor
parameters. The region near the contour, with a value
of ten represents a region in which there is a partial
cancellation of the inductive component of the motion
of the semiconductor charge carriers by the capacitive
displacement current of the semiconductor lattice.
Therefore, since one is generally interested in measuring
effects due to the motion of the charge carriers (i.e.,
ocac and 1), one might expect to find the largest de-
pendence upon these parameters in the regions of Fig. 2
corresponding to a larger value of ]kal than this mini-
mum. Figure 3 shows that this is indeed the case, for it
shows that the portions of the curves of Fig. 1 that are
the most useful correspond to the high ]ka[ values in
the lower right-hand side of Fig. 2. It is apparent that
the present high-conductivity assumption [i.e., (8)] is
a self-consistent assumption in those regions of the
curves of Fig. 1 [or (9) and (10)] that are most useful
for computational purposes.

CONCLUSIONS

The attenuation, guide wavelength, and character-
istic impedance of waveguides propagating TExo modes
with one side wall replaced by a high-conductivity semi-
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Fig. 2. A graphical illustration of the contours of equal value of the
parameter |ka| as a function of the electrical properties of the
indium antimonide with the conditions of Fig. 1. At large con-
ductivities and small values of wr, this parameter is indeed larger

than 2w, as was assumed in the derivation of (9) and (10).
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Fig. 3. A graphical illustration of the contours of equal value of the
parameter |ka| of Fig. 2 superimposed on the curves of Fig. 1.
Notice that in the region where the curves of Fig. 1 show a large
dependence on the electrical properties of the indium antimonide,
the parameter |ke| is much larger than 2, thus illustrating the
self-consistency of this assumption in this region of the curves of

Fig. 1.

conductor have been derived. It has been shown that
the penetration of the microwave electric field into the
semiconductor material effectively increases the width
of the waveguide by an amount of the same order as the
classical skin depth. The analytical results have been
evaluated for the case of an indium antimonide side
wall in RG 138/U waveguide operating at 110 Ge/s.
The calculated attenuation lengths and guide wave-
lengths for this case are of such magnitude that they can
be measured with reasonable accuracy, thus illustrating
the value of this technique for the measurement of the
high-frequency properties of indium antimonide.
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A Technique for Measuring Individual Modes
Propagating in Overmoded Waveguide

D. S. LEVINSON, MEMBER, IEEE, AND I. RUBINSTEIN, MEMBER, IEEE

Abstract—A practical measurement technique for determining
the relative amplitude and phase of the individual modes propagating
in overmoded waveguide is described. A phase-sensitive detector is
used to measure the output of fixed probes placed around a single
transverse plane in a section of enlarged waveguide. The detected
output is directly proportional to the modal components, and data
reduction is performed manually. The use of oversize waveguide
provides increased accuracy and permits total multimode power
measurements in conjunction with mode analysis. The technique
can be used for mode measurements up to the fourth harmonic in
standard rectangular waveguide. Experiments described in the paper
use a single frequency source. However, signal sources with spurious
content can be evaluated using appropriate tunable RF band-pass
filters.

INTRODUCTION
MEASUREMENTS in waveguide containing two

or more propagating modes has received con-
siderable attention from microwave engineers
in recent years. This paper describes a practical tech-
nique for mode measurement that can provide rapid
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performance data on waveguide components subjected
to overmoded propagation of power.

An effective device or technique for measuring multi-
mode power must be able to determine the power in
each mode or measure the total power regardless of the
number of modes present. Both approaches have been
used by various independent investigators to measure
multimode power, and a number of techniques have been
developed for use with rectangular waveguide [1]~[6].
Of particular interest here is the technique reported by
Taub, based on the use of an enlarged section of wave-
guide [1]. This technique measures the total multimode
power in the waveguide without identification of, or
regard for, the individual propagating modes.

This paper describes a simple and practical measure-
ment technique for identifying the individual modes and
determining their relative amplitude and phase using
the same oversize waveguide as Taub. Whereas Taub's
method requires enlarged waveguide as a basic com-
ponent, its use for mode measurements proves to be
advantageous from practical considerations rather than
being required by theoretical considerations.



